

Welcome to Patch’s documentation!

[image: _images/Helveg%2Fpatch.svg]
 [https://badge.fury.io/gh/Helveg%2Fpatch][image: _images/patch.svg]
 [https://travis-ci.com/Helveg/patch][image: _images/badge.svg]
 [https://codecov.io/gh/Helveg/patch][image: _images/code%20style-black-000000.svg]
 [https://github.com/psf/black][image: Documentation Status]
 [https://patch.readthedocs.io/en/latest/?badge=latest]
Contents:

	Usage
	Philosophy

	Basic usage

	Sections
	Retrieving segments

	Recording

	Position in space

	Connecting components
	Connecting sections

	Network connections

	Magic methods
	__neuron__

	__netcon__

	patch package
	patch.core module

	patch.interpreter module

	patch.objects module

	Module contents

	Candy Guide
	Referencing

	Sections & Segments

	Parallel networks

Installation

Patch can be installed using:

pip install nrn-patch

Syntactic sugar & quality of life

This wrapper aims to make NEURON more robust and user-friendly, by patching common
gotcha’s and introducing sugar and quality of life improvements. For a detailed overview
of niceties that will keep you sane instead of hunting down obscure bugs, check out the
Candy Guide.

Known unpatched holes

	When creating point processes the returned object is unwrapped.
This can be resolved using Glia [https://github.com/dbbs-lab/glia], or by
using this syntax:

In neuron
process = h.MyMechanismName(my_section(0.5), *args, **kwargs)
In patch
point_process = p.PointProcess(p.MyMechanismName, my_section(0.5), *args, **kwargs)

Indices and tables

	Index

	Module Index

	Search Page

Usage

[image: Inline replacement of NEURON by Patch]
Be aware that the interface is currently incomplete, this means that most parts
are still “just” NEURON. I’ve only patched holes I frequently encounter myself
when using the h.Section, h.NetStim and h.NetCon functions. Feel free to
open an issue or fork this project and open a pull request for missing or broken
parts of the interface.

Philosophy

Python interfaces should be Pythonic, this wrapper offers just that:

	Full Python objects: each wonky C-like NEURON object is wrapped in a full
fledged Python object, easily handled and extended through inheritance.

	Duck typed interface: take a look at the magic methods I use and any object
you create with those methods present will work just fine with Patch.

	Correct garbage collection, objects connected to eachother don’t dissapear:
Objects that rely on eachother store a reference to eachother. As is the basis
for any sane object oriented interface.

Basic usage

Use it like you would use NEURON. The wrapper doesn’t make any changes to the
interface, it just patches up some of the more frequent and ridiculous gotchas.

Patch supplies a new HOC interpreter p, the PythonHocInterpreter which wraps
the standard HOC interpreter h provided by NEURON. Any objects returned will
either be PythonHocObject’s wrapping their corresponding NEURON object, or
whatever NEURON returns.

When using just Patch the difference between NEURON and Patch objects is handled
transparently, but if you wish to mix interpreters you can transform all Patch objects
back to NEURON objects with obj.__neuron__() or the helper function
patch.transform.

from patch import p, transform
import glia as g

section = p.Section()
point_process = g.insert(section, "AMPA")
stim = p.NetStim()
stim.start = 10
stim.number = 5
stim.interval = 10

And here comes the magic! This explicitly defined connection
isn't immediatly garbage collected! What a crazy world we live in.
Has science gone too far?
p.NetCon(stim, point_process)

It's fully compatible using __neuron__
from neuron import h
nrn_section = h.Section()
nrn_section.connect(transform(section))
nrn_section.connect(section.__neuron__())

Sections

Sections are cilindrical representations of pieces of a cell. They have a length and a
diameter. Sections are the main building block of a simulation in NEURON.

You can use the .connect method to connect Sections
together.

Sections can be subdivided into Segments by specifying
nseg, the simulator calculates the voltage for each segment, thereby affecting the
spatial resolution of the simulation. The position of a segment is represented by its
normalized position along the axis of the Segment. This means that a Segment at x=0.5
is in the middle of the Section. By default every section consists of 1 segment and
the potential will be calculated for 3 points: At the start (0) and end (1) of the
section, and in the middle of every segment (0.5). For 2 segments the simulator would
calculate at 0, 0.333…, 0.666… and 1.

Patch

from patch import p
s = p.Section()
s.L = 40
s.diam = 0.4
s.nseg = 11

s2 = p.Section()
s.connect(s2)

NEURON

from neuron import h
s = h.Section()
s.L = 40
s.diam = 0.4
s.nseg = 11

s2 = h.Section()
s.connect(s2)

Retrieving segments

Sections can be called with an x to retrieve the segment at that x. The segments of a
Section can also be iterated over.

Patch

s.nseg = 5
seg05 = s(0.5)
print(seg05)
for seg in s:
 print(seg)

NEURON

s.nseg = 5
seg05 = s(0.5)
print(seg05)
for seg in s:
 print(seg)

Recording

You can tell Patch to record the membrane potential of your Section at one or
multiple locations by calling the .record function and giving it an x. If
x is omitted 0.5 is used.

In NEURON you’d have to create a Vector and keep track of
it somewhere and find a way to link it back to the Section it recorded, in Patch a
section automatically stores its recording vectors in section.recordings.

Patch

s.record(x=1.0)

NEURON

v = h.Vector()
v.record(s(1.0))
all_recorders.append(v)

Position in space

With Patch it’s very straightforward to define the 3D path of your Section through
space. Call the .add_3d function with a 2D array containing the xyz data of your
points. Optionally, you can pass another array of diameters.

Patch

s.add_3d([[0, 0, 0], [2, 2, 2]], diameters)

NEURON

s.push()
points = [[0, 0, 0], [2, 2, 2]]
for point, diameter in zip(points, diameters):
 h.pt3dadd(*point, diameter)
h.pop_section()

Connecting components

Connecting sections

To other sections

Connecting sections together is the basic way of constructing cells in NEURON. You can
do so using the Section.connect method.

Patch

from patch import p
s = p.Section()
s2 = p.Section()
s.connect(s2)

NEURON

from neuron import h
s = h.Section()
s2 = h.Section()
s.connect(s2)

Network connections

TO DO

In parallel simulations

In Patch most of the parallel context is managed for you, and you can use the
interpreter.PythonHocInterpreter.ParallelCon() method to either connect an
output (cell soma, axons, …) to a GID or a GID to an input (synapse on postsynaptic
cell, …)

Patch

Detecting the spikes of a Section and connecting them to GID 1:

from patch import p
gid = 1
s = p.Section()
nc = p.ParallelCon(s, gid)

Connecting the spikes of GID 1 to a synapse:

from patch import p
gid = 1
syn = p.Section().synapse(p.SynExp)
nc = p.ParallelCon(gid, syn)

NEURON

Detecting the spikes of a Section and connecting them to GID 1:

from neuron import h
gid = 1
h.nrnmpi_init()
pc = h.ParallelContext()
s = h.Section()
nc = h.NetCon(s(0.5)._ref_v, None)
pc.set_gid2node(gid, pc.id())
pc.cell(gid, nc)
pc.outputcell(gid)

Connecting the spikes of GID 1 to a synapse:

from neuron import h
gid = 1
h.nrnmpi_init()
pc = h.ParallelContext()
s = h.Section()
syn = h.SynExp(s)
pc.gid_connect(gid, syn)

Magic methods

__neuron__

Get the object’s NEURON pointer

Whenever an object with this method present is sent to the NEURON HOC interpreter, the
result of this method is passed instead. This allows Python methods to encapsulate NEURON
pointers transparently

__netcon__

Get the object’s NetCon pointer

Whenever an object with this method present is used in a NetCon call, the result of this method is passed
instead. The connection is stored on the original object. This allows to simplify the
calls to NetCon, or to add more elegant default behavior. For example inserting a
connection on a section might connect it to a random segment and you’d be able to use
p.NetCon(section, synapse).

patch package

patch.core module

patch.interpreter module

patch.objects module

Module contents

Candy Guide

Referencing

All objects in Patch that depend on each other reference each other, meaning that Python
won’t garbage collect parts of your simulation that you explicitly defined. An example of
this is that when you create a synapse and a NetStim and connect them together with a
NetCon, you only have to hold on to 1 of the variables for Patch to know that if you’re
holding on to a NetCon you are most likely interested in the parts it is connected to.
There is no longer a need to store every single NEURON variable in a list or on an object
somewhere. This drastically cleans up your code.

Sections & Segments

	When connecting Sections together they all reference each other.

	Whenever you’re using a Section where a Segment is expected, a default Segment will be
used (Segment 0.5):

s = p.Section()
syn = p.ExpSyn(s)
syn = h.ExpSyn(s(0.5))

	Whenever a Section/Segment is recorded or connected and a NEURON scalar is expected
_ref_v is used:

s = p.Section()
v = p.Vector()
v.record(s) # v.record(s(0.7)._ref_v)

	Sections can record themselves at multiple points:

s = p.Section()
s.record() # Creates a vector, makes it record s(0.5)._ref_v and stores it as a recorder
s.record(0.7) # Records s(0.5)._ref_v

plt.plot(list(s.recordings[0.5]), list(p.time))

	Sections can connect themselves to a PointProcess target with .connect_points, which
handles NetCon stack access transparently. This allows for example for easy creation of
synaptic contacts between a Section and a target synapse:

s = p.Section()
target_syn = p.Section().synapse(p.ExpSyn) # Creates an ExpSyn synapse
s.connect_points(target_syn) # Creates a NetCon between s(0.5)._ref_v and target_syn

	Create a current clamp in a Section and configure it with keyword arguments:

clamp = p.Section().iclamp(amp=10, delay=0, duration=100)
Pass an array to inject a varying current per timestep starting from the delay.
clamp2 = p.Section().iclamp(amp=[i for i in range(1000)], delay=100)

	You can place Sections on the stack with .push(), .pop() or a context manager:

s = p.Section()
s.push()
s.pop()
with s.push():
 s_clamp = p.IClamp()
`s` is automatically popped from the stack when the context is exited.

	p.SectionRef can be called with either an arg or sec kwarg:

s = p.Section()
sr = p.SectionRef(sec=s)
sr = p.SectionRef(s)

Parallel networks

When you get to the level of the network the work becomes alot easier if you can describe
your cells in a more structured way, so be sure to check out Arborize [https://arborize.readthedocs.io/en/latest/].

If you want to stay vanilla Patch still has you covered; it comes with out-of-the-box
parallelization. Introducing the transmitter-receiver pattern:

if p.parallel.id() == 0:
 transmitter = ParallelCon(obj1, gid)
if p.parallel.id() == 1:
 receiver = ParallelCon(gid, obj2)

Just these 2 commands will create a transmitter on node 0 that broadcasts the spikes of
obj1 (sections, segments) with the specified GID and a receiver on node 1 for obj2
(synapses, most likely?) that listens to spikes with that GID. Know that under the hood it
needs to be something that can be connected to a NetCon.

That’s it. You are now spiking in parallel!

Arbitrary data broadcasting

MPI has a great feature, it allows broadcasting data to other nodes. In NEURON this is
restricted to just Vectors. Patch gives you back the freedom to transmit arbitrary data.
Anything that can be pickled can be transmitted:

data = None # It's important to declare your var on all nodes to avoid NameErrors
if p.parallel.id() == 12:
 data = np.random.randint((12,12,12))
received = p.parallel.broadcast(data, root=12)

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Patch’s documentation!

 		
 Usage

 		
 Philosophy

 		
 Basic usage

 		
 Sections

 		
 Retrieving segments

 		
 Recording

 		
 Position in space

 		
 Connecting components

 		
 Connecting sections

 		
 To other sections

 		
 Network connections

 		
 In parallel simulations

 		
 Magic methods

 		
 __neuron__

 		
 __netcon__

 		
 patch package

 		
 patch.core module

 		
 patch.interpreter module

 		
 patch.objects module

 		
 Module contents

 		
 Candy Guide

 		
 Referencing

 		
 Sections & Segments

 		
 Parallel networks

 		
 Arbitrary data broadcasting

_static/minus.png

_static/plus.png

_static/file.png

