

Welcome to Patch’s documentation!

[image: _images/Helveg%2Fpatch.svg]
 [https://badge.fury.io/gh/Helveg%2Fpatch][image: _images/patch.svg]
 [https://travis-ci.com/Helveg/patch][image: _images/badge.svg]
 [https://codecov.io/gh/Helveg/patch][image: _images/code%20style-black-000000.svg]
 [https://github.com/psf/black][image: Documentation Status]
 [https://patch.readthedocs.io/en/latest/?badge=latest]
Contents:

	Usage
	Philosophy

	Basic usage

	Sections
	Retrieving segments

	Recording

	Position in space

	Magic methods
	__neuron__

	__netcon__

	patch package
	patch.core module

	patch.interpreter module

	patch.objects module

	Module contents

Installation

Patch can be installed using:

pip install nrn-patch

Known unpatched holes

	When creating point processes the returned object is unwrapped.
This can be resolved using Glia [https://github.com/dbbs-lab/glia], or by
using this syntax:

In neuron
process = h.MyMechanismName(my_section(0.5), *args, **kwargs)
In patch
point_process = p.PointProcess(p.MyMechanismName, my_section(0.5), *args, **kwargs)

Indices and tables

	Index

	Module Index

	Search Page

Usage

[image: Inline replacement of NEURON by Patch]
Be aware that the interface is currently incomplete, this means that most parts
are still “just” NEURON. I’ve only patched holes I frequently encounter myself
when using the h.Section, h.NetStim and h.NetCon functions. Feel free to
open an issue or fork this project and open a pull request for missing or broken
parts of the interface.

Philosophy

Python interfaces should be Pythonic, this wrapper offers just that:

	Full Python objects: each wonky C-like NEURON object is wrapped in a full
fledged Python object, easily handled and extended through inheritance.

	Duck typed interface: take a look at the magic methods I use and any object
you create with those methods present will work just fine with Patch.

	Correct garbage collection, objects connected to eachother don’t dissapear:
Objects that rely on eachother store a reference to eachother. As is the basis
for any sane object oriented interface.

Basic usage

Use it like you would use NEURON. The wrapper doesn’t make any changes to the
interface, it just patches up some of the more frequent and ridiculous gotchas.

Patch supplies a new HOC interpreter p, the PythonHocInterpreter which wraps
the standard HOC interpreter h provided by NEURON. Any objects returned will
either be PythonHocObject’s wrapping their corresponding NEURON object, or
whatever NEURON returns.

When using just Patch the difference between NEURON and Patch objects is handled
transparently, but if you wish to mix interpreters you can transform all Patch objects
back to NEURON objects with obj.__neuron__() or the helper function
patch.transform.

from patch import p, transform
import glia as g

section = p.Section()
point_process = g.insert(section, "AMPA")
stim = p.NetStim()
stim.start = 10
stim.number = 5
stim.interval = 10

And here comes the magic! This explicitly defined connection
isn't immediatly garbage collected! What a crazy world we live in.
Has science gone too far?
p.NetCon(stim, point_process)

It's fully compatible using __neuron__
from neuron import h
nrn_section = h.Section()
nrn_section.connect(transform(section))
nrn_section.connect(section.__neuron__())

Sections

Sections are cilindrical representations of pieces of a cell. They have a length and a
diameter. Sections are the main building block of a simulation in NEURON.

You can use the .connect method to connect Sections
together.

Sections can be subdivided into Segments by specifying
nseg, the simulator calculates the voltage for each segment, thereby affecting the
spatial resolution of the simulation. The position of a segment is represented by its
normalized position along the axis of the Segment. This means that a Segment at x=0.5
is in the middle of the Section. By default every section consists of 1 segment and
the potential will be calculated for 3 points: At the start (0) and end (1) of the
section, and in the middle of every segment (0.5). For 2 segments the simulator would
calculate at 0, 0.333…, 0.666… and 1.

Patch

from patch import p
s = p.Section()
s.L = 40
s.diam = 0.4
s.nseg = 11

s2 = p.Section()
s.connect(s2)

NEURON

from neuron import h
s = h.Section()
s.L = 40
s.diam = 0.4
s.nseg = 11

s2 = h.Section()
s.connect(s2)

Retrieving segments

Sections can be called with an x to retrieve the segment at that x. The segments of a
Section can also be iterated over.

Patch

s.nseg = 5
seg05 = s(0.5)
print(seg05)
for seg in s:
 print(seg)

NEURON

s.nseg = 5
seg05 = s(0.5)
print(seg05)
for seg in s:
 print(seg)

Recording

You can tell Patch to record the membrane potential of your Section at one or
multiple locations by calling the .record function and giving it an x. If
x is omitted 0.5 is used.

In NEURON you’d have to create a Vector and keep track of
it somewhere and find a way to link it back to the Section it recorded, in Patch a
section automatically stores its recording vectors in section.recordings.

Patch

s.record(x=1.0)

NEURON

v = h.Vector()
v.record(s(1.0))
all_recorders.append(v)

Position in space

With Patch it’s very straightforward to define the 3D path of your Section through
space. Call the .add_3d function with a 2D array containing the xyz data of your
points. Optionally, you can pass another array of diameters.

Patch

s.add_3d([[0, 0, 0], [2, 2, 2]], diameters)

NEURON

s.push()
points = [[0, 0, 0], [2, 2, 2]]
for point, diameter in zip(points, diameters):
 h.pt3dadd(*point, diameter)
h.pop_section()

Magic methods

__neuron__

Get the object’s NEURON pointer

Whenever an object with this method present is sent to the NEURON HOC interpreter, the
result of this method is passed instead. This allows Python methods to encapsulate NEURON
pointers transparently

__netcon__

Get the object’s NetCon pointer

Whenever an object with this method present is used in a NetCon call, the result of this method is passed
instead. The connection is stored on the original object. This allows to simplify the
calls to NetCon, or to add more elegant default behavior. For example inserting a
connection on a section might connect it to a random segment and you’d be able to use
p.NetCon(section, synapse).

patch package

patch.core module

	
patch.core.transform(obj)

	Transforms an object to its NEURON representation, if the __neuron__ magic
method is present.

	
patch.core.transform_netcon(obj)

	

	
patch.core.transform_record(obj)

	

patch.interpreter module

	
class patch.interpreter.PythonHocInterpreter

	Bases: object

	
NetCon(source, target, *args, **kwargs)

	

	
PointProcess(factory, target, *args, **kwargs)

	Creates a point process from a h.MyMechanism factory.

	Parameters

	
	factory (function) – A point process method from the HocInterpreter.

	target (objects.Segment) – The Segment this point process has to be inserted into.

	
VecStim(pattern=None, *args, **kwargs)

	

	
continuerun(time_stop)

	

	
finitialize(initial=None)

	

	
load_extension(extension)

	

	
run()

	

	
property time

	

	
wrap(factory, name)

	

patch.objects module

	
class patch.objects.NetCon(interpreter, ptr)

	Bases: patch.objects.PythonHocObject

	
class patch.objects.NetStim(*args, **kwargs)

	Bases: patch.objects.PythonHocObject, patch.objects.connectable

	
class patch.objects.PointProcess(*args, **kwargs)

	Bases: patch.objects.PythonHocObject, patch.objects.connectable

Wrapper for all point processes (membrane and synapse mechanisms). Use
PythonHocInterpreter.PointProcess to construct these objects.

	
stimulate(pattern=None, **kwargs)

	

	
class patch.objects.PythonHocObject(interpreter, ptr)

	Bases: object

	
class patch.objects.Section(*args, **kwargs)

	Bases: patch.objects.PythonHocObject, patch.objects.connectable

	
add_3d(points, diameters=None)

	Add a new 3D point to this section xyz data.

	Parameters

	
	points – A 2D array of xyz points.

	diameters (float or array) – A scalar or array of diameters corresponding to the points. Default value is the section diameter.

	
connect(target, *args, **kwargs)

	

	
connect_points(target, x=None)

	

	
insert(*args, **kwargs)

	

	
record(x=None)

	

	
set_dimensions(length, diameter)

	

	
set_segments(segments)

	

	
wholetree()

	

	
class patch.objects.Segment(*args, **kwargs)

	Bases: patch.objects.PythonHocObject, patch.objects.connectable

	
class patch.objects.VecStim(*args, **kwargs)

	Bases: patch.objects.PythonHocObject, patch.objects.connectable

	
property pattern

	

	
property vector

	

	
class patch.objects.Vector(interpreter, ptr)

	Bases: patch.objects.PythonHocObject

	
record(target, *args, **kwargs)

	

	
class patch.objects.connectable

	Bases: object

Module contents

	
patch.connection(source, target, strict=True)

	

	
patch.get_data_file(*dirs)

	Retrieve a file from the data directory that is installed together with the
package.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 patch	

 	
 	
 patch.core	

 	
 	
 patch.interpreter	

 	
 	
 patch.objects	

Index

 A
 | C
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add_3d() (patch.objects.Section method)

C

 	
 	connect() (patch.objects.Section method)

 	connect_points() (patch.objects.Section method)

 	
 	connectable (class in patch.objects)

 	connection() (in module patch)

 	continuerun() (patch.interpreter.PythonHocInterpreter method)

F

 	
 	finitialize() (patch.interpreter.PythonHocInterpreter method)

G

 	
 	get_data_file() (in module patch)

I

 	
 	insert() (patch.objects.Section method)

L

 	
 	load_extension() (patch.interpreter.PythonHocInterpreter method)

N

 	
 	NetCon (class in patch.objects)

 	
 	NetCon() (patch.interpreter.PythonHocInterpreter method)

 	NetStim (class in patch.objects)

P

 	
 	patch (module)

 	patch.core (module)

 	patch.interpreter (module)

 	patch.objects (module)

 	
 	pattern() (patch.objects.VecStim property)

 	PointProcess (class in patch.objects)

 	PointProcess() (patch.interpreter.PythonHocInterpreter method)

 	PythonHocInterpreter (class in patch.interpreter)

 	PythonHocObject (class in patch.objects)

R

 	
 	record() (patch.objects.Section method)

 	(patch.objects.Vector method)

 	
 	run() (patch.interpreter.PythonHocInterpreter method)

S

 	
 	Section (class in patch.objects)

 	Segment (class in patch.objects)

 	
 	set_dimensions() (patch.objects.Section method)

 	set_segments() (patch.objects.Section method)

 	stimulate() (patch.objects.PointProcess method)

T

 	
 	time() (patch.interpreter.PythonHocInterpreter property)

 	transform() (in module patch.core)

 	
 	transform_netcon() (in module patch.core)

 	transform_record() (in module patch.core)

V

 	
 	VecStim (class in patch.objects)

 	VecStim() (patch.interpreter.PythonHocInterpreter method)

 	
 	Vector (class in patch.objects)

 	vector() (patch.objects.VecStim property)

W

 	
 	wholetree() (patch.objects.Section method)

 	
 	wrap() (patch.interpreter.PythonHocInterpreter method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Patch’s documentation!

 		
 Usage

 		
 Philosophy

 		
 Basic usage

 		
 Sections

 		
 Retrieving segments

 		
 Recording

 		
 Position in space

 		
 Magic methods

 		
 __neuron__

 		
 __netcon__

 		
 patch package

 		
 patch.core module

 		
 patch.interpreter module

 		
 patch.objects module

 		
 Module contents

_static/minus.png

_static/plus.png

_static/file.png

_images/b8dc28cfbdc45d750ca09fe25f089da772447fc9.gif
@ base.py — neurons
1 from heuron import h

